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We consider phase multistability and phase synchronization phenomena in a chain of period-doubling
oscillators. The synchronization in arrays of diffusively coupled self-sustained oscillators manifests itself as
rotating wave regimes, which are characterized by equal amplitudes and phases in every site which are shifted
by a constant value. The value of the phase shift is preserved while the shape of motion becomes more
complex through a period-doubling cascade. The number of coexisting attractors increases drastically after the
transition from period-one to period-two oscillations and then after every following period-doubling bifurca-
tion. In the chaotic region, we observe a number of phase-synchronized modes with instantaneous phases
locked in different values. The loss of phase synchronization with decreasing coupling is accompanied by
intermittency between several synchronous regimes.
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I. INTRODUCTION

Synchronization of oscillations in coupled systems is one
of the fundamental properties of nature, which has many
applications in different fields of science and technology:
arrays of coupled lasers �1� and Josephson junctions �2�, net-
works of electronics oscillators �3�, reaction-diffusion sys-
tems �4�, etc. If oscillators are periodic, their synchronization
manifests in two interconnected phenomena: �a� adjustment
of their periods and �b� locking of the instantaneous phases.
In the last case, the difference between the phases of neigh-
boring oscillators ���t�, being arbitrary in the asynchronous
state, takes some determined stationary value ����t�
=���1�� after synchronization. Some systems allow several
values of stationary phase shifts ����1� ,���2� , . . . ,���M��,
where everyone corresponds to its own attractor. In this case,
the system demonstrates “phase multistability” �PM� �5�.
Hence, phase multistability is a special type of multistability
observed in coupled systems, when coexisting attractors
have equal �or very close� dynamical characteristics �ampli-
tudes, frequencies, etc.�, but differ by the phase shifts be-
tween time series in the subsystems. If the shape of oscilla-
tions is simple �close to harmonic oscillations�, a system of
two coupled oscillators typically demonstrates only one syn-
chronous state �however, there are exceptions, see, for ex-
ample, �6��. When the form of oscillations becomes more
complex �for example, as a result of period-doubling bifur-
cations�, the number of coexisting phase modes may in-
crease. This scenario was described in detail in a number of
works �5,7�. In particular, in systems of two symmetrically
coupled identical period-doubling oscillators, the number of
coexisting attractors doubles after every period-doubling bi-
furcation if the coupling is sufficiently small. As a result, at
the threshold to chaos the system demonstrates an infinite
number of coexisting stable states. In the chaotic region, the
number of attractors begins to decrease as a consequence of
band-merging bifurcations, which are accompanied by merg-
ing of the attractors. This process ends with the appearance
of a single one-band chaotic attractor. In �8�, it was shown
that the formation of multistability takes place through the

same bifurcation mechanism as the process of loss of com-
plete synchronization of chaos. Transverse period-doubling
bifurcations of the main family of saddle periodic orbits play
the key role in both phenomena.

In ensembles of more than two oscillators, the coexisting
synchronous regimes characterized by different phase shifts
are observed already on the stage of simple oscillations. For
large chains, they can be considered as waves running along
the discrete medium with a constant phase speed �running
waves and rotating waves �RWs�� �9�. This type of spatial
organization is of great importance for certain engineering
applications such as in the design of antenna systems. It also
can take place in behavior of some biological systems �10�.
Bifurcation analysis of different phase modes in ensembles
of harmonic oscillators for different types of coupling has
been studied in �11�. In �12�, it was demonstrated that bista-
bility of elements of the chain can lead to the appearance of
stationary spatial disorder. The possibility of the appearance
of new effects due to the complication of the form of oscil-
lations was investigated in �13�.

A large body of research has been devoted to simple pe-
riodic oscillators or just to phase equation models. However,
RW can exist also for arrays of elements with complex cha-
otic behavior. Chaotic rotating waves �CRWs� have been ob-
served in a number of works �14�. The transition from peri-
odic to chaotic RW in a ring of diffusively coupled self-
sustained oscillators with period-doubling bifurcations was
described in �15�. It was shown that on the plane of param-
eters, “coupling-excitation” RW with different spatial periods
forms an encapsulated structure. Regions of regimes with
shorter wavelengths are contained inside regions with longer
wavelengths. While increasing the parameter of excitation on
the base of each periodic RW, a set of period-doubling bifur-
cations takes place leading to a complication of oscillations
as well as bifurcations where tori are born. As a result of this
evolution, chaotic RWs appear, which are characterized by
the same spatial periodicity as the original periodic RW. With
further development of chaos, different CRWs unite into a
spatially and temporally chaotic mode. The described sce-
nario gives a general picture of the complication of spa-
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tiotemporal dynamics in arrays of coupled period-doubling
oscillators. However, some questions remain unanswered: �a�
how is the spatial order observed for RW connected with the
synchronization between oscillators? �b� How many different
attractors coexist in phase space and how does their number
change with period-doubling bifurcations? �c� Is it possible
to find some common classification for different coexisting
attractors? �d� Are these regimes typical or is it only possible
to find them with a specific choice of the initial values? �e�
Can other than RW oscillatory regimes be found in phase
space? An attempt to find answers to these questions, as well
as to give a general and sufficiently detailed description of
processes of multistability formation and synchronization in
arrays of coupled period-doubling oscillators, is the main
stimulus to this research.

The paper is organized as follows. Section II outlines
common properties of the oscillations under study and car-
ries out a simple analysis of their stability with respect to
perturbations in the harmonic approximation. It does not
contain principally new results but gives some necessary
definitions introducing the subject of research. In Sec. III we
consider period-one RW regimes in a ring of Rössler oscil-
lators and evaluate how typical they are from the point of
view of initial values. Section IV describes the evolution of
the waves with parameter changes from periodic to chaotic
oscillations. Section V is devoted to common regularities of
the formation of multistability in the system. There we make
an attempt to calculate coexisting attractors and give their
common classification in terms of their phase spectrum. Sec-
tion VI is devoted to chaotic RW considering them from the
point of view of phase synchronization. The last section sum-
marizes the results.

II. OSCILLATING REGIMES UNDER STUDY AND THE
ANALYSIS OF STABILITY OF SIMPLE

OSCILLATIONS

Let us consider a finite array of coupled identical oscilla-
tors with symmetric diffusive coupling,

ẋi = f�xi,�� + �̂�xi+1 − xi� + �̂�xi−1 − xi� , �1�

where xi is the L-dimensional vector of dynamical variables
of the ith oscillator �i=1,2 ,3 , . . . ,N�, f is the vector function
defining its internal dynamics, � is the control parameter,
while �̂ is the positively defined coupling matrix. Here and
further, we will use periodic boundary conditions x0=xN,
xN+1=x1. We suppose that without coupling each oscillator
exhibits limit-cycle oscillations, the shape of which is close
to harmonic oscillations xi�t�=�i�t�. Here �i�t+T�=�i�t� are
T-periodic functions of time, whose shape is close to a cosine
function. Since all oscillations are identical and autonomous,
all functions �i are the same up to some arbitrary time shifts
��i�: �i�t�=��t+�i�. The particular values of �i are defined by
the initial condition.

From the projection of the trajectory of system �1� to the
subspace of each oscillator xi, we can define the instanta-
neous phase �i�t� of oscillations in the site i, which charac-
terizes the current location of the phase point on the limit
cycle. Here we define the phase as a piecewise linear,

T-periodic function of time, taking values within the interval
�−� ;��,

�i�t� = 2�
t − tn

tn+1 − tn
− � , �2�

where tn �n=1,2 ,3 , . . .� are points of subsequent unidirec-
tional intersections of the trajectory xi�t� with some trans-
verse �NL−1�-dimensional manifold. Differences between
phases in neighboring oscillators

��i�t� = �i+1�t� − �i�t�, �i = 1,2, . . . ,N� �3�

will be called phase shifts between the oscillations. Since all
oscillators have equal periods, the phase shifts do not change
with time taking constant values ��i�t�=Ci. Due to periodic
boundary conditions, the whole sum of them along the array
�=�i=1

N Ci must be proportional to 2�: �=2�k, where the
index k� �−N /2:N /2� is an integer value.

Coupling between the oscillators synchronizes them. The
synchronization removes the uncertainty of differences in the
instantaneous phases. They take determined values, which do
not depend anymore continuously on the initial condition,
but are defined by the properties of the system. Chains of
identical oscillators �Eq. �1�� permit states with phase-shift
constants, which are equal to each other: ��i�t�=��. In this
case, oscillations in every point of the discrete medium have
equal amplitudes, periods, and other dynamical characteris-
tics but differ from each other by the constant phase shift.
Such oscillations can be considered as waves, rotating with a
phase velocity v=2� / �T��� along the ring, with the corre-
sponding wavelength �=2� /��. For the chain of finite
length N, the number of possible RW M is finite and equal to
N, while the particular value of �� can be found from the
index k,

���k� =
2�k

N
. �4�

So, depending on k, every RW has its value of v=N /Tk and
�=N /k. Further, we will use k as an index, which classifies
a rotating wave, since its value determines its spatial charac-
teristics. Simple periodic RW will be denoted as 1Ck, where
the first numerical index �1,2 ,4 ,8 , . . .� denotes the periodic-
ity of the limit cycle, the letter C points out the periodic
temporal behavior �cycle�, while the upper index defines the
spatial structure of the wave. The waves of higher temporal
periods will be noted as 2Ck, 4Ck, etc.

The value k=0 relates to the spatially homogeneous re-
gime of in-phase oscillations, k= 	N /2 relates to antiphase
oscillations in neighboring sites. Other positive values of k
define RW rotating in the positive direction �forward wave�,
while the corresponding negative values −k define the same
RW but rotating in the negative direction �backward wave�.
Both forward and backward waves have the same character-
istics except for their directions, hence, we focus only on
forward waves. If �=N /k is an integer value, oscillations in
the ith and the �i+��th sites are in phase. This oscillation is
spatially periodic with spatial period �.
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The RW described above corresponds to possible oscillat-
ing modes of the ring. To analyze their stability let us con-
sider system �1� near the point of Andronov–Hopf bifurca-
tion on the example of coupled Van der Pol generators,

f�x� = � y

�� − x2�y − x
	 ,

with scalar coupling

�̂ = �� 0

0 0
	 .

With these assumptions, the behavior of the ring can be de-
scribed by the equations for the complex scalar amplitudes
ai,

ȧi =
�

2
ai −


ai
2ai

8
+

�

2
�ai+1 + ai−1 − 2ai�, i = 1,2, . . . ,N ,

�5�

where �
0 governs the amplitude of the periodic oscilla-
tions in the uncoupled element. It grows as ��. Writing Eq.
�5� in polar coordinates �i
0 and −���i��, we get equa-
tions for the real amplitudes and phases,

�̇i =
�

2
�i −

�i
3

8
+

�

2
��i+1 cos��i+1 − �i�

+ �i−1 cos��i−1 − �i� − 2�i� , �6�

�̇i =
�

2
��i+1

�i
sin��i+1 − �i� +

�i−1

�i
sin��i−1 − �i�	 . �7�

Equilibrium points of Eqs. �6� and �7� correspond to limiting
periodic oscillations with T=1 in the original system: xi�t�
=�i cos�t+�i�. If all the amplitudes and phase shifts are
equal to each other ��i=� ,�i+1−�i=�i−�i−1=���k�= 2�k

N �,
we obtain equations, which describe the rotating wave with a
given k,

��k�˙ =
�́k

2
��k� −

���k��3

8
, �8�

��k�˙ = 0, �9�

where

�́k = � − 2��1 − cos����k��� . �10�

The form of Eqs. �8� and �9� coincides with the equation for
the single-uncoupled oscillator if the excitation parameter is
recalculated according to Eq. �10�. Hence, similarly to the
uncoupled oscillator, the trivial solution �=0 bifurcates on
lines �=2��1−cos���k�� with the birth of a new periodic
solution with amplitude ��k�=2��́k. With changing k, there is
a sequence of equal bifurcations. If �
0, the first bifurcation
takes place on the line �=0. This leads to the appearance of
stable spatially homogeneous oscillations �1C0�. After the
bifurcation, the trivial solution becomes a saddle. Then, on
each line �=2��1−cos�2k� /N�� �k=1,2 , . . . ,N /2−1� one
more eigenvalue crosses the imaginary axis. In this bifurca-

tion, two waves are born: 1Ck and 1C−k running in opposite
directions. So, with increasing � we observe a sequence of
bifurcations which give birth to RW of shorter and shorter
wavelengths. The last bifurcation occurs for k=N /2 on the
line �=4�. If �0, the scenario is the opposite. The stable
solution �=0 bifurcates on the line �=4� with the appear-
ance of stable antiphase oscillations 1CN/2. In the following
bifurcations, saddle waves of longer and longer wavelengths
are born until the appearance of spatially homogeneous os-
cillations on the line �=0. Further, we will consider only
positive coupling values.

All RW regimes, except the spatially homogeneous one,
are unstable in the moment of their emergence. To find re-
gions of their stability, we use the standard technique of lin-
ear stability analysis in the neighborhood of the chosen so-
lutions �8� and �9�. For arrays of diffusively coupled
oscillators, this method was described in �16,17�. The matrix
of linearization of Eqs. �6� and �7� has the following form:

�J� = �
�A0� �A1� 0 0 . . . �A−1�
�A−1� �A0� �A1� 0 . . . 0

0 �A−1� �A0� �A1� . . . 0

. . .

�A1� 0 0 0 . . . �A0�
 , �11�

where �A−1�, �A0�, and �A1� are the 2�2 matrices,

�A−1� = �
�

2
cos����k��

���k�

2
sin����k��

−
�

2��k�sin����k��
�

2
cos����k��  ,

�A0� = �− �� k − � cos����k�� 0

0 − � cos����k�� 	 ,

�A1� = �
�

2
cos����k�� −

���k�

2
sin����k��

�

2��k�sin����k��
�

2
cos����k��  .

Since matrix �11� is right circular, its eigenvalues can be
easily found,

�0,1
�k� = 0, �12�

�0,2
�k� = − �́k, �13�

�i,1
�k� = −

�́k

2
+� �́k

2

4
+ �2 sin2����k��sin2�2�i/N�

− � cos����k���1 − cos�2�i/N�� , �14�

�i,2
�k� = −

�́k

2
−� �́k

2

4
+ �2 sin2����k��sin2�2�i/N�

− � cos����k���1 − cos�2�i/N�� , �15�
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i = 1, . . . ,N − 1.

The zero eigenvalue �0,1 reflects the invariance of the solu-
tion to the choice of the initial phase. The bifurcation condi-
tion for the eigenvalue �0,2: �́k=0, relates to the bifurcations
of �=0 described above. Hence, the inequality �́k
0 defines
the region of existence of the considered regime ��i

�k� ;�i
�k��,

while its stability is determined by Eqs. �14� and �15�. The
latter ones give us the region of stability in the plane �−�,
which is determined by the following inequalities:

� 
 ��2 − 4 cos���k� +
1 + cos�2�/N�

cos���k�
	 , �16�

� cos���k� � 0. �17�

Let us analyze the formulas �16� and �17�. From Eq. �17�,
it is seen that ���k� must be less than � /2; therefore, only a
part of N rotating wave regimes can be found as stable for
��0. For a chain of N oscillators, the number of coexisting
modes M must be the integer part of the value N /4, if N is
not proportional to 4. In the limiting case, when N=4n , n
=1,2 ,3 , . . . some of the waves �with ���k�=� /2� are neu-
trally stable. The latter is not observed at nonzero positive
coupling. However, the � /2 waves with more complex os-
cillations can exist at positive coupling. Therefore, the case
of N=4n appears to be more complex for the analysis of
multistability and needs a special consideration.

Figure 1 depicts regions of stability for the chain �Eqs. �8�
and �9�� of N=30 oscillators. For this length, k can take
values 0 ,1 , . . . ,15; however, only some of them �0�k�7�
can be found to be stable since only for them ���k�� /2.
Thus, the line �=0 divides the parameter plane into regions
with long-wavelength regimes 1C0 . . .1C7 ���0� and short-

wavelength ones 1C8 . . .1C15 ��0�. The regions of stability
of RW are denoted by Lk. They are defined by the equation,

� = ��2 − 4 cos���k� +
1 + cos�2�/N�

cos���k�
	 .

The regions themselves are marked by different gray scales
from white for 1C0 to black for 1C7. The darker color relates
to the shorter wave. Here, we see an embedded structure of
multistability. At small coupling, there exists any rotating
wave with ��k� /2. Increasing � leads to the elimination
of shorter waves, while the longer ones still exist. At last,
when the coupling is strong enough only spatially homoge-
neous oscillations survive in the system. Showing the stabil-
ity diagram for harmonic oscillations, Fig. 1 gives us a first
approximation of the structure in the parameter plane for real
unharmonic oscillators. At least we can expect a similar
structure for period-one oscillations, though the structure for
more complex periodic or chaotic oscillations remains an
open question.

III. SYSTEM UNDER STUDY AND THE SIMPLE RW

Now, let us come to the analysis of arrays of oscillators
with more complex behavior, which demonstrate a transition
from simple period-one to high-period periodic and chaotic
oscillations via a cascade of period-doubling bifurcations.
For numerical simulations, we choose a ring of coupled
Rössler oscillators, which represents one of the basic models
of nonlinear dynamics �18�. The equations of the system are

ẋi = − yi − zi + ��xi+1 − 2xi + xi−1� ,

ẏi = xi + 0.2yi,

żi = 0.2 + zi�xi − c� . �18�

Here xi, yi, and zi are the dynamical variables of the ith
oscillator �i=1, . . . ,N�, c is a control parameter, which gov-
erns the dynamics of the uncoupled oscillator, while ��0 is
the parameter of a scalar diffusive coupling. The number of
oscillators was chosen as N=30.

Systems �18� were investigated by means of numerical
simulations from different initial values. The resulting time
series in the long term limit was analyzed by phase portraits,
Poincaré sections, power spectrum,

Pi�f� = �Fi�f�Fi
��f�� ,

�where Fi�f� is the Fourier transform of xi�t�, while f is the
frequency� and phase cross spectrum between xi�t� and
xi+1�t� oscillations

��i�f� = �i+1�f� − �i�f�

��i is the Fourier phase of xi: Fi�f�= 
Fi�f�
exp(j�i�f���. All
used spectral characteristics are based on well-defined meth-
ods of spectral analysis �see, for example, �19��. The
Poincaré map is used for visualization of the spatial structure
of RW. We search for the moments tn when the variable y1
changes its sign from positive to negative, plotting the cor-
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FIG. 1. Regions of stability of harmonic RW for the chain �5�
with 30 oscillators. The regions themselves are marked by different
grayscales from white for 1C0 to black for 1C7. The darker color
relates to the shorter wave. Lines Lk denote the boundaries of the
regions for the correspondent waves Ck.
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responding values of xi�tn� versus i. The plots represent
“snapshots” of the wave at time instants related to the fixed
value of the phase in the first oscillator. This method has
been described in �15�.

To begin with, we consider simple rotating waves at small
coupling �=0.005. At 0.4c2.85, oscillations in the chain
are one periodic. Let us choose the parameter c=2.35. Ac-
cording to the preliminary analysis in Sec. II, we can expect
RW with index k=0,1 , . . . ,7. The choice of the particular
RW regime is determined by the choice of the initial values.
To get the RW with given k, we must choose the initial
distribution of the variables sufficiently close to the desired
wave. One of the possible ways to realize this is to set the
initial values of xi and yi as sine and cosine functions with
phases i�� and choose ��=���k�,

xi = X0 sin�i��� ,

yi = Y0 cos�i��� ,

zi = 0,

i = 0,1, . . . ,N − 1, �19�

where X0 and Y0 are chosen sufficiently close to the ampli-
tudes of x and y variables in the uncoupled oscillator. The
numerical simulation shows that this procedure leads to the
desired results. All expected RW can be found as stable.
Figure 2 depicts the snapshots of the waves with k=0, 1, 2,
4, and 7 �the left-hand column� and the cross projections of
phase portraits in the variables x1-x2 �the right-hand column�
obtained at c=2.35. The structure of the snapshots is seen to
be determined by the index k. Its value is equal to the num-
ber of minima and maxima along the chain. In the figure, we
also show the snapshots of the backward waves by dotted
lines.

All oscillations presented in Fig. 2 have equal amplitudes
and periods in every site and phases that are equidistantly
distributed along the array. Figure 3 plots the power spec-
trum of x1�t� and the phase cross spectrum of x1�t� and x2�t�
oscillations for the 1C2 mode. The power spectrum contains
the main harmonic at frequency f0�0.17 and its higher har-
monics at 2f0, 3f0, etc. The value of the phase of the main
harmonic ��1

�1�=��1�f0� is exactly equal to the value of the
instantaneous phase shift for this mode ��1

�1�=−4� /30�
−0.42. The phases of higher harmonics are proportional to it:
���nf0�=n���1�. The power and phase cross spectrum of
other xi �i=2,3 , . . . ,N−1� oscillations are the same as of x1.

So, we see that at small coupling and chosen c the sys-
tems �18� are characterized by phase multistability. Do other
than 1C0−1C7 waves or regimes with nonuniform distribu-
tion of phases exist in phase space? Let us set the initial
values according to Eqs. �19� but use arbitrary values of ��.
Choosing the initial values this way, we have carried out
numerical simulations to study the dependence of the result-
ing regime type on the angle ��. The results are depicted in
Fig. 4. Choosing initial values according to Eqs. �19� with
0�����, we have got all predicted RW regimes. None of
the regimes, except 1C0−1C7, has been observed at the de-
scribed choice of the initial values. At small values of the

angle, the system converges to the spatially homogeneous
wave 1C0. Subsequent increasing in �� leads to a set of
jumps to shorter and shorter waves 1C0→1C1→ . . . →1C7.
At ��� /2, the dependence of the resulting regime on the
initial values is regular. Nearby points of �� mostly corre-
spond to the same resulting wave. Near and beyond ��
=� /2, the dependence is essentially changed. Since none of
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FIG. 2. Snapshots of rotating waves with different index k
0
�left-hand panel� and projections of their phase portraits �right-hand
panel�: �a� k=0; �b� k=1; �c� k=2; �d� k=4; and �e� k=7. Dotted
lines on the left-hand panel depict the snapshots of the backward
waves. The values of the parameters are c=2.35 and �=0.005.
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the RW has the value of its phase shift in this range, we
observe a random dependence of the resulting regime on the
initial conditions. Even nearby initial values may lead to dif-
ferent regimes in the long term limit.

Our special choice of the initial values �19� does not an-
swer the question how typical the different RWs are and it
does not allow to evaluate their basins of attraction. For this
purpose, we used randomly distributed initial values

xi = X0�i
�x�,

yi = Y0�i
�y�,

zi = Z0�i
�x�, �20�

where �i
�x,y,z� are uncorrelated random numbers uniformly

distributed within the interval �−1;1�, X0=1 , Y0=0.5, Z0
=1 are constants. The results of the simulation are summa-
rized in Fig. 5, which plots the probabilities p�k� of the ap-
pearance of a certain k mode versus k for two different val-
ues of parameter c: c=1.35 and c=2.7. The investigation
demonstrates that the two longest modes with k=0 and k
=1 are typical solutions for systems �18�. Together they ap-
pear with a probability of about 85%. The remaining 15% of
initial conditions converge to shorter waves with k=2, 3, and
4. The regimes with k
5 were not observed with up to 2000
different random initial values. For both parameter values,
the dependence is qualitatively similar. However, with in-
creasing c the appearance of shorter waves becomes more
probable.

Thus, the investigation of random initial values gives us
the possibility to conclude that rotating wave regimes are
typical modes for the dynamics in the diffusively coupled
chain of oscillators. With random initial values, they appear
with almost 100% probability. No other than RW regimes
have been observed in the system. The values of the prob-
abilities of different waves allow to evaluate their relative

basins of attraction. They must correlate with the values of
p�k�. We can conclude that the two longest waves 1C0 and
1C1 have the largest basins, while the basins of the other
ones are negligibly small in comparison to them and de-
crease in size with increasing index k.

IV. EVOLUTION OF RW REGIMES WITH CHANGE IN
THE CONTROL PARAMETER

With increasing c, the uncoupled Rössler oscillator dem-
onstrates a cascade of period-doubling bifurcations, starting
with 1C→2C at c=2.85 until the transition to chaos at c
�4.35. In the chaotic region, band-merging bifurcations and
periodic windows are observed. This evolution leads to the
one-band chaotic attractor of spiral type, which with further
increase in c is changed to the developed funnel chaotic at-
tractor. The behavior of the coupled system generally re-
sembles this scenario; however, it has its peculiarities.

Let us consider the evolution of spatiotemporal behavior
of systems �18� with a gradual increase in c at weak coupling
�=0.005. We choose initial values related to one of the RW
then increase slowly c and look for bifurcations taking place
on the base of the chosen wave. Repeating this scenario for
RW with different k, we find the following general proper-
ties:

�1� The evolution of the spatially homogeneous oscilla-
tions with k=0 takes place through the cascade of period-
doubling bifurcations, repeating the evolution of the un-
coupled oscillator.

�2� Behavior of other RW with k�0 differs from spatially
homogeneous oscillations. They demonstrate a cascade of
period-doubling bifurcations with the replacement of the first
bifurcation by the sequence �i� birth of a two-dimensional
torus and �ii� saddle-node bifurcation on the torus. The last
ones are accompanied by a symmetry breaking when one
self-symmetric quasiperiodic solution generates several
period-two cycles which are symmetric to each other.

�3� RW with high-period limit-cycles and many-band cha-
otic attractors can have “defects” in their spatial structure,
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cyclic choice of initial values �19� on angle ��. The values of ���k�
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when several oscillators in the chain oscillate with the dis-
tinct phases of the subharmonics compared to their neigh-
bors. The presence of these defects increases the number of
coexisting attractors.

�4� The oscillation with complex temporal behavior inher-
its the spatial structure from the initial period-one RW. The
phase differences at the main frequency are equal to each
other in every oscillator of the chain: ��i

�1�=2�k /N. The
sum of the phase shifts � keeps its initial value during the
evolution from the period-one limit cycle to the one-band
chaotic attractor.

Let us consider the evolution of the regimes in more de-
tail. In Fig. 6 we depict several successively complicated
oscillations appearing from the wave 1C2 �see Fig. 2�c�� with
increasing c. All of them are characterized by the same spa-
tial structure as the original wave. Two maxima and two
minima appear along the chain, which exist on the whole
route to chaos �Figs. 6�a�–6�c�� and even inside the chaotic
region �Figs. 6�d� and 6�e��. At c�2.8, the uncoupled oscil-
lator undergoes a period-doubling bifurcation. By contrast, in
the array of oscillators we observe a transition from periodic
to quasiperiodic behavior �Fig. 6�a��, which is followed by
the transition to a period-two limit cycle at c�3.05 �Fig.
6�b��. This change in the bifurcation mechanism, namely,
that the period-doubling bifurcation is replaced by the se-
quence of torus-birth and saddle-node bifurcation on the
torus, is typical for systems of two coupled identical oscilla-

tors �5,7,20,21�. In �15�, this peculiarity was also shown for
an array of Chua’ generators.

The quasiperiodic oscillations appearing after the bifurca-
tion have their special feature. The whole chain exhibits
period-two oscillations with phase shifts equal to each other,
except for several distinct sites whose phase shifts take other
values. The location of these defect oscillations moves along
the ring with constant velocity. In the distribution of phase
shifts along the chain, we observe several moving “phase
defects.” The number of defects appears to be equal to the
value of index k. Hence, the considered mode with k=2 in
the regime of quasiperiodic oscillations exhibits two such
defects. Figure 7�a� depicts the distribution of phase shifts
along the chain in three successive instants of time t
=0,2000,4000 for the wave described in Fig. 6�b�. Here, we
see two phase defects �marked as “A” and “B”�, which si-
multaneously move along the array with constant speed. The
three successive locations of the defects are marked by
A ,A� ,A� and B ,B� ,B�, respectively. Thus, we have oscilla-
tions with two different time scales: the period of oscillations
in every oscillator and the rotation period of the defects
round the ring. With increasing c, the speed of the rotation is
getting slower and, at c�3.05, it becomes equal to zero. The
defects “freeze” �Fig. 7�b�� and the oscillations become pe-
riodic.

After the transition to period-two oscillations, the new
2C2 attractors �Fig. 6�b�� are characterized by the same val-
ues of the phase of the main harmonic ��i

�1� in every site as
its predecessor 1C2. However, the distribution of phase shifts
along the chain has two frozen phase defects. The spectral
analysis of the oscillations has shown that their presence is
connected with the phases of the new subharmonic ��i

�1/2�

=��i�0.5f0�, appearing after the doubling of the period. Fig-
ure 8 depicts the phase portraits �top panels� and phase cross
spectra �bottom panels� of oscillations in the “regular” part
of the chain �Fig. 8�a�� and inside one of the defects �Fig.
8�b��. It is seen that while the phases at the main frequency
take equal values in both cases, the phases of the subhar-
monic ���i

�1/2�� have more “degrees of freedom.” In the con-
sidered oscillators, they can take two different values:
0.5���1� in regular oscillators �Fig. 8�a�� and 0.5���1�+� in
defect oscillators �Fig. 8�b��. Let us divide the whole array
into pairs of neighboring oscillators: X1= �x1 ,x2�, X2
= �x2 ,x3�, . . . XN−1= �xN−1 ,xN�, XN= �xN ,x1�. Every pair can be

FIG. 6. Snapshots and phase portraits of oscillations originating
from 1C2 with increasing c: �a� c=2.85, �b� c=3.05, �c� c=4.1, �d�
c=4.4, and �e� c=6.25.
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in one of the two possible states: “regular” if ��i
�1/2�

=0.5��i�f0� or defect if ��i
�1/2�=�+0.5��i�f0�. We denote

the first state by letter “a” and the second one by letter “b.”
So the particularly chosen period-two regime can be denoted
by the sequence of letters: aaa . . .ba. . .. For example, the
regime described in Fig. 9�b� with two defects “frozen” in
the locations i=1 and i=15 can be written as the sequence
a . . .a

13

bba . . .a
13

bb. However, the regime shown in Fig. 6�b� is

not the only oscillation of k=2 mode. Evidently, due to the
translation symmetry of systems �18�, there are 14 additional
attractors, which are symmetric to each other and which can
be obtained by shifting the variables by 1,2 , . . . ,14 steps.
The symmetric regime obtained by shifting by one step has
the notation ba . . .abba . . .ab, the next one bba . . .abba . . .a,

and so on until the shift by 15 steps when the new regime
13 13 13 13

coincides with the initial one. Thus, after the transition from
period-one to period-two oscillations the initial 1C2 mode
“splits” to 15 submodes, each of which is attributed to the
location of the phase defects inside the array. The evolution
of each of these submodes takes place the same way.

Further complication of the shape of oscillations takes
place via a cascade of period-doubling bifurcations, which
leads to many-band chaotic attractors 2C2→4C2→8C2 . . .
→chaos. After the transition to chaos, there are band-
merging bifurcations of many-band chaotic attractors �there
is a two-band attractor in Fig. 6�d��, which lead to a one-
band chaotic attractor �Fig. 6�e��.

The evolution of the temporal behavior through the se-
quence of bifurcations from a simple 1C2 wave to spiral
chaos keeps the spatial structure of the oscillations, the sum
of phase shifts �, and the value of the phase at the main
frequency in every oscillator ��i

�1�. Figure 9 depicts cross
phase spectra for some typical regular and chaotic regimes of
the k=2 family: period-four cycle �Fig. 9�a��, two-band �Fig.
9�b��, and one-band �Fig. 9�c�� chaotic attractors. It is seen
that in the last cases, the phase of the main harmonic is
locked in the same value as the phase of the original period-
one cycle.

V. DEVELOPMENT OF MULTISTABILITY WITH
COMPLICATION OF OSCILLATIONS

In the previous section, we have demonstrated that the
gradual complication of the shape of oscillations does not
violate its spatial structure and the phase relations attributed
to the wave. So, high-period periodic, quasiperiodic, and
even chaotic oscillations which appeared on the basis of a
period-one rotating wave can be considered as RW with
more complex temporal behavior. Therefore, in the phase
space of systems �18�, there are 15 different spatial modes
with k=0, 	1, . . . , 	7. How many of these modes can be
found simultaneously at the chosen parameters values? In
Fig. 10 we show the location of each mode in the parameter
plane. This figure demonstrates qualitative similarity with
that for harmonic oscillations shown in Fig. 1. Every line Li
bounds the region of stability of the corresponding mode
with k= i. The regions themselves are distinguished by dif-
ferent gray scales: darker colors correspond to shorter waves.

We see a similar structure of encapsulated domains as in Fig.
1. The regions of shorter waves are located inside the regions
of longer ones. Hence, at small coupling we can expect at
least 15 different attractors in phase space. How does the
number of coexisting attractors change with increasing com-
plexity of the oscillations?
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FIG. 9. �Color online� Phase cross spectrum of oscillations of
k=2 family of regimes: �a� period-four limit cycle �Fig. 6�c��, �b�
two-band chaotic attractor �Fig. 6�d��, �c� one-band chaotic attractor
�Fig. 6�e��, and �d� the part of figure �c� inside the rectangle.
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After the transition from period-one to period-two oscil-
lations, a symmetry breaking of the attractors occurs: one
self-symmetric 1Ck wave gives birth to several 2Ck waves
which are symmetric to each other. For example, for the k
=2 mode, this leads to 15 attractors. Every one of these 15
attractors is characterized by its location of the phase defects.
As we have found, the number of defects of period-two os-
cillations coincides with the index k and the defects are dis-
tributed homogeneously along the array. So we can expect
that after the transition to period-two oscillations, the number
of coexisting attractors must increase as �NM1, where M1 is
the number of coexisting period-one waves. However, our
investigations have revealed that this value is in fact much
larger. To evaluate the number of coexisting attractors, we
carried out a numerical simulation of systems �18� starting
from random initial values �20�. In Fig. 11�a�, we plot the
dependence of the number of attractors found using I sets of
initial values. We see that this number grows almost linearly
with I and has no tendency to saturate. It manifests that this
value significantly exceeds 1931 attractors found after 2000
different runs; hence, this number is much larger than �450
expected attractors. For comparison in Fig. 11�b�, we com-
puted the same dependency for period-one oscillations. Here
we observe saturation after approximately 800 sets of initial
values in nine coexisting attractors related to small values of
k=0, 	1, 	2, 	3, 	4.

To evaluate the number of period-two attractors and their
types, we consider different waves with k=2 at randomly
chosen initial values. Figure 12 depicts two examples of such
regimes, which we got from two different random initial val-
ues. Both presented waves have the same spatial structure
with two maxima and two minima along the chain. They are
also characterized by the same value of the phases of their
main harmonics in the cross spectrum ��i

�1�=−0.418. The
differences between these regimes appear to be defined by
the values of the phases of the subharmonics. Their distribu-
tion along the chain is depicted on the right side of the figure.
Here we observe that the chain contains oscillations in neigh-
boring sites of two types: with the phase of the subharmonics

��i
�1/2�=0.5��i

�1�=−0.209 �element a� and ��i
�1/2�=0.5��i

�1�

+�=2.932 �element b�. Note that the considered waves have
another structure than the example described in the previous
section �Fig. 6�b��. They have more than two defects and the
defects are located nonuniformly along the chain. Hence,
they appear to be a result of other bifurcations than described
there. The analysis of Fig. 12 and of the corresponding pic-
tures of other period-two regimes allows us to formulate the
hypothesis that the number of both elements a and b and
their location can be arbitrary in the chain. In this case, an
arbitrary 2C2 regime can have any combination of a and b
oscillations and, hence, the whole number of corresponding
period-two regimes M2 of the particular mode is 2N−1 �since
only N−1 pairs are independent, but the Nth pair is deter-
mined by the first and �N−1�th pair�,

M2 = M12N−1. �21�

In the case of N=30 elements, it gives the value of
80 530 636 890 coexisting regimes, which evidently exceeds
the possibility of numerical checking.

The huge number of period-two attractors does not allow
us to check the hypothesis on the considered system of 30
oscillators. However, it can be checked for shorter lattices.
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FIG. 11. The number of coexisting attractors found with I sets of
randomly chosen initial values for �a� period-two �c=3.15� and �b�
period-one �c=2.7� oscillations.
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For N=2,3 ,5 ,6, the expression �21� predicts M2
=2 ,4 ,48,96 attractors, respectively. N=4 is a special case
since it includes � /2 waves, which are neutrally stable at
harmonic approximation. The investigation shows that some
of the � /2 waves with period-two behavior exist at very
small coupling ��0.005. Nevertheless, for simplicity we ex-
clude the case of N=4 from our consideration. The numeri-
cal simulations support the expected number of attractors for
the short arrays. In Fig. 13 the number of found period-two
attractors is plotted versus the number of chosen initial val-
ues for N=3 and N=5. In the both cases, we observe fast
saturation of the plot to the predicted values: 4 and 48 attrac-
tors, respectively. Similar results are obtained for N=2 and
N=6 arrays.

The further evolution of oscillations based on each of the
M2 attractors takes place via period doublings. After every
period doubling, we observe the same behavior of phases of
the new sub-sub-…-sub-harmonics as in the case of period-
two oscillations. For example, after transition to period-four
oscillations the phase of the first sub-sub-harmonic ��i

�1/4�

=��i�0.25f0� can take two different values ��i
�1/2� /2 or �

+��i
�1/2� /2, where ��i

�1/2� is the phase of the first subhar-
monic in the chosen pair of oscillators. Hence, each of the
M2 period-two attractors gives birth to 2N−1 period-four at-

tractors, and the whole number of period-four attractors is
expected to be

M4 = M14N−1.

It predicts 16 attractors in an array of three oscillators and
768 attractors in an array of five oscillators. The results of
the numerical simulations are presented in Fig. 13 as well. In
the first case, the expected value after which the number of
found attractor remains constant is reached sufficiently
quickly �Fig. 13�a��. In the second case, the value has not
been reached after 10 000 different runs, but we observe con-
vergence of extrapolation of the plot to it �see Fig. 13�b��.
Extrapolating the rule for period-two and period-four attrac-
tors for other high-periodic ones, we obtain the number of
coexisting period-i limit cycles,

Mi = M1iN−1. �22�

Formula �22� generalizes the known rule for multistability
formation in two coupled period-doubling oscillators �5�,
where the number of coexisting attractors doubles after every
doubling of the period. It gives an infinite number of coex-
isting attractors at the threshold to chaos and, practically, an
infinite number of high-period periodic attractors for suffi-
ciently large chains.

After the transition to chaos on the base of every period-i
cycle, an i-band chaotic attractor is formed. Band-merging
bifurcations of chaotic attractors are accompanied by merg-
ing of the attractors originated from different limit cycles. As
a result, the number of coexisting chaotic attractors succes-
sively decreases after every bifurcation. This can be ex-
plained in terms of their power and phase spectra. The tran-
sition from a 2n-band to a 2n−1-band attractor means a
“dissolving” of the nth subharmonic in the power spectrum
of oscillations and of the corresponding unlocking of their
phases. This can be demonstrated using the example of the
transition between two-band and one-band chaotic attractors
whose phase portraits, power spectra, and phase cross spectra
are depicted in Figs. 14�a�, 14�b�, 9�c�, and 9�d�. In Figs.
14�a� and 14�b�, we built snapshots, power spectrum, and
two phase cross spectrum of chaotic waves originating from
the period-two cycles depicted in Figs. 12�a� and 12�b�. The
phase cross spectra are calculated for two different sites in
the array, where the original limit-cycles exhibited oscilla-
tions of a type and b type. We see that the values of the
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phases of subharmonics of the predecessors are inherited by
the chaotic attractors. Phases on “dissolved” sub-sub-
harmonics are uniformly distributed on the �−� ;�� interval.
Hence, CRW inherits the phase defects of the periodic RW
on the base of which they have been formed and the number
of two-band attractors must be equal to the number of
period-two cycles. Therefore, for the evaluation of the num-
ber of chaotic attractors, we have the same formula as that
for periodic cycles. After the sequence of band-merging bi-
furcations in phase space, there are 15 chaotic RW charac-
terized by the same value of �=2�k, k=0, 	1, . . . , 	7 as
the original period-one cycles. Their spatial structures �see
Fig. 6�e�� are inherited from the structures of periodic rotat-
ing waves.

VI. PHASE SYNCHRONIZATION BETWEEN
OSCILLATORS IN THE REGIME OF CHAOTIC RW

Spatial order demonstrated in the regime of chaotic RW
must evidently be a consequence of synchronization between
oscillators in the chain, which typically takes the form of
chaotic phase synchronization �PS�. PS is the phenomenon of
instantaneous phase locking �22�, which is also characterized
by frequency adjustment �23� and coherence increase �24�.
Phase synchronization can be formally defined as the bound-
edness of the difference between instantaneous phases �A,B
of the time series from subsystems A and B,

lim
t→�


�A�t� − �B�t�
  R , �23�

where R is a positive value. This relation indicates the pres-
ence of correlations between phases, while instantaneous am-
plitudes remain uncorrelated. Besides the full phase synchro-
nization defined by Eq. �23�, there is an “imperfect” PS �25�.
This means that instantaneous phases remain locked during
sufficiently long but finite time intervals, after which the
phase difference “slips” to the next locked value. As a result,
on the average the phase difference goes slowly to infinity.

The main problem in investigating chaotic phase synchro-
nization is the correct definition of phases for oscillations of
complex shape. The instantaneous phases are known to be
well defined when the chaotic attractor is quite “good,”
namely, when its spectrum has a well-distinguished peak on
a frequency corresponding to some preferable time scale of
oscillations. Therefore, oscillators with coherent chaos are
typical models to investigate the phenomenon of chaotic
phase synchronization. We restrict ourselves to the spiral-
type chaos where different definitions for the instantaneous
phase give quantitatively similar results �26�. In our ap-
proach, we define the instantaneous phase �i�t� of chaotic
oscillations just “unwrapping” the phases �Eq. �2�� from the
interval �−� ;�� to the semi-interval �−� ;��,

�i�t� = �i�t� + 2�n ,

where n is the number of jumps of the function �i�t� to the
value −2�. Besides instantaneous phases, we will look at the
coherence function �ij of xi�t� and xj�t� oscillations,

�ij�f� = � Cij�f�
�Pi�f�Pj�f�

� ,

where Cij�f�= �Fi�f�Fj
��f�� is the power cross spectrum. The

function �ij�f� characterizes qualitatively the locking of the
Fourier phases on the chosen frequency f: �ij�f�=1 at the
frequencies where differences between the Fourier phases
remain constant (�i�f�−� j�f�=const) and �ij�f�→0 at those
frequencies where the phases are totally independent and,
hence, their differences �i�f�−� j�f� take random values uni-
formly distributed in �−� ;�� �the strict equality �ij�f�=0
holds if the number of data points approaches infinity�.

To observe the phenomenon of PS more clearly, we intro-
duce a small mismatch between neighboring oscillators,

ẋi = �i�− yi − zi� + ��xi+1 − 2xi + xi−1� ,

ẏi = �i�xi + 0.2yi� ,

żi = 0.2 + zi�xi − c� , �24�

where �i is the parameter of the mismatch. �i is equal to 1
for odd i and to 1+����1� for even i. The value of �i
influences the basic frequency of uncoupled oscillations, so
our modification allows us to study an array of slightly de-
tuned oscillators, when each oscillator surrounded by two
neighbors with frequencies differing from its own by equal
values.

Let us consider systems �24� at c=6.5, which is related to
the one-band spiral chaos in the uncoupled oscillator and at
�=0.025. At these values of the parameters, both in the sym-
metrical ��=0� and in the slightly mismatched ��=0.001�
systems there are 15 chaotic RW with k=0, 	1, . . . , 	7 co-
existing in phase space. The portraits of several of them,
namely, those which originated from the waves in Fig. 2 are
depicted in Fig. 15. Every CRW is characterized by a con-
stant value of k�t�=k, as well as the full coherence of the
oscillations on the main frequency and its harmonics, while
the coherence on other frequencies is essentially less than 1
�see Fig. 16�a��. Will these properties preserve at smaller
coupling? We choose the initial values which correspond to
the shortest wave with k=7. Then we gradually decrease the
coupling toward zero and look for the change in the behavior
of k�t�. For this purpose, we built the “bifurcation diagram”
in terms of k. We compute the values k�t� during the interval
t0 t t0+T �t0=30 000 is the time of relaxation, T=2000 is
the interval of observation� for each value of �. The results
of this study are presented in Fig. 17. We see that the whole
interval of coupling can be quantitatively divided into two
subintervals: �
0.002 with constant k and 0��0.002
�marked by gray color� with drifting k. In the first interval,
we observe subsequent “jumps” from shorter waves to
longer ones until k=1. So, the mode with k=7 changes to the
mode with k=6 at ��0.018, then to k=5 at ��0.0065, k
=4 at ��0.0042, and so on.

Every mode with constant k�t� represents the typical case
of phase synchronization of chaos with locking of instanta-
neous phases near some determined value. To support this
conclusion, we plot the difference between instantaneous
phases ��1,2�t� in time in Fig. 18�a� for k=7 and k=2. The
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instantaneous phases are locked near the values of the phases
of main harmonics ���1�. The power spectra and the coher-
ence functions are similar to those in Fig. 16�a�.

After decreasing the coupling strength to ��0.002, the
behavior is changed. The value k�t� is not constant in time
anymore but moves randomly between several integer val-
ues. This indicates the break of the spatial order attributed to
the chaotic rotating wave and the loss of perfect synchroni-
zation. The instantaneous phase difference begins to “dif-
fuse” from one locking state to another as it is shown in Fig.
18�b� �top panel�. This can also be seen from the coherence
function �Fig. 16�b��, which is less than 1 at the main fre-
quency. The Fourier phases are not locked anymore. The
behavior of the coherence function can serve as one more
diagnosis tool of the transition from full phase synchroniza-
tion to the imperfect one �24�. So we can conclude that the
behavior of both the instantaneous phases and the coherence
function exhibit evidence for the loss of synchronization.
Nevertheless, in spite of the case of two coupled oscillators,
here the value of the difference between instantaneous
phases remains finite in time. Actually, the character of the
dynamics looks like an intermittency process between sev-
eral phase synchronous states. This can be seen in Fig. 18�b�
�bottom plane�, where we show the time evolution of k. It is
seen that it does not keep the constant value anymore but
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FIG. 17. Dependence of k�t� on coupling strength at c=6.25.
The region of drifting k is distinguished by the gray color.

FIG. 18. Time dependence of difference between instantaneous
phases ��1 �top� and k �bottom� at c=6.25 with decreasing cou-
pling: �a� �=0.025, �b� �=0.0012, and �c� �=0.0007. In �a� curve l1

relates to the k=2 wave; l2 relates to the k=7 wave.
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jumps randomly between several values. Between the mo-
ments of the jumps, there exist sufficiently long intervals of
constant values k=0 and k= 	1.

With further decreasing coupling, at ��0.001 we observe
another qualitative transition in synchronous behavior. Here,
the regime of intermittency between synchronous states is
changed to the “classical” imperfect phase synchronization,
where the phase difference drifts slowly to infinity, tempo-
rally “braking” near some intermediate values. This state is
depicted in Fig. 18�c� �top panel�. This behavior of instanta-
neous phases is reflected in the dynamics of k�t�. The inter-
vals during which it remains constant are reduced to zero and
k jumps permanently between several values. Further de-
creasing coupling toward zero leads to further vanishing of
imperfect synchronization, which, at zero coupling, turns
into fully asynchronous oscillations.

VII. CONCLUSION

We considered the development of phase multistability in
an ensemble of self-sustained period-doubling oscillators
with symmetric diffusive coupling. In the case of simple
period-one oscillations, PM manifests as a sequence of N /2
coexisting rotating waves with different wavelengths. These
regimes appear with almost 100% probability when choosing
initial values randomly.

The transition to high-period oscillations increases the
number of attractors. After every period doubling, we find as
many attractors as the number of attractors before the bifur-
cation times 2N−1. On the threshold to chaos, the number of
attractors tends to infinity. In the chaotic region, the tendency
is the opposite. Development of chaos via band-merging bi-
furcations decreases the number of coexisting attractors by a
factor 2N−1 after every bifurcation. As a result, the number of
coexisting period-i limit cycles coincides with the number of
coexisting i-band chaotic attractors. This process results in
N /2 chaotic rotating waves in the regime of one-band spiral
chaos.

In the regime of CRW, the array demonstrates the phe-
nomenon of chaotic phase synchronization between neigh-
boring oscillators. Gradual decreasing coupling strength
leads first to a transition from shorter waves to longer ones.
Then, at very small coupling, the regime of chaotic rotating
waves turns into intermittency between several waves. This
is accompanied by the loss of locking of the phase of the
main harmonic in the cross spectrum and, thus, loss of full
phase synchronization between the oscillators. The phase
synchronization becomes imperfect, though the value of
phase difference does not go to infinity, but drifts within a
limited interval between several values. At last, after further
decreasing coupling toward values close to zero, this type of
oscillations is changed to classical imperfect synchronization
behavior with intervals of temporal locking of the phases
which are connected by phase slips.

Our results generalize the regularities of development of
phase multistability observed in two coupled oscillators �5,8�
to a network of an arbitrary length. We found out that arrays
with several elements, which do not possess multistability
themselves, can demonstrate a huge number of coexisting
attractors being weakly coupled. The spatial structure, which
appears already after the first period-doubling bifurcation, is
characterized by the presence of a number of phase defects,
whose quantity and location are practically unpredictable.
This leads to unpredictable spatial structures which can be
observed in sufficiently small networks of simple periodic
oscillators. The last property can be important both for un-
derstanding of fundamental laws of nature since many phe-
nomena observed in physics, biology, chemistry, and other
sciences are results of collective behavior of many interact-
ing oscillator and, from practical point of view, for example,
for tasks of coding of information and memory storage, etc.
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